Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Sci Transl Med ; 14(629): eabj5305, 2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-2325160

ABSTRACT

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need. The receptor binding domain (RBD) is a key target of SARS-CoV-2 neutralizing antibodies but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists alone or formulated with aluminum hydroxide (AH) and benchmarked them against AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that an AH and CpG adjuvant formulation (AH:CpG) produced an 80-fold increase in anti-RBD neutralizing antibody titers in both age groups relative to AH alone and protected aged mice from the SARS-CoV-2 challenge. The AH:CpG-adjuvanted RBD vaccine elicited neutralizing antibodies against both wild-type SARS-CoV-2 and the B.1.351 (beta) variant at serum concentrations comparable to those induced by the licensed Pfizer-BioNTech BNT162b2 mRNA vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and enhanced cytokine and chemokine production in human mononuclear cells of younger and older adults. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.


Subject(s)
Aluminum Hydroxide , COVID-19 , Aged , Animals , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , Mice , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
2.
Open Forum Infect Dis ; 9(8): ofac417, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2319246

ABSTRACT

Background: Patients with lymphoid malignancies are at risk for poor coronavirus disease 2019 (COVID-19)-related outcomes and have reduced vaccine-induced immune responses. Currently, a 3-dose primary regimen of mRNA vaccines is recommended in the United States for immunocompromised hosts. Methods: A prospective cohort study of healthy adults (n = 27) and patients with lymphoid malignancies (n = 94) was conducted, with longitudinal follow-up through completion of a 2- or 3-dose primary mRNA COVID vaccine series, respectively. Humoral responses were assessed in all participants, and cellular immunity was assessed in a subset of participants. Results: The rate of seroconversion (68.1% vs 100%) and the magnitude of peak anti-S immunoglobulin G (IgG) titer (median anti-S IgG = 32.4, IQR = 0.48-75.0 vs median anti-S IgG = 72.6, IQR 51.1-100.1; P = .0202) were both significantly lower in patients with lymphoid malignancies compared to the healthy cohort. However, peak titers of patients with lymphoid malignancies who responded to vaccination were similar to healthy cohort titers (median anti-S IgG = 64.3; IQR, 23.7-161.5; P = .7424). The third dose seroconverted 7 of 41 (17.1%) patients who were seronegative after the first 2 doses. Although most patients with lymphoid malignancies produced vaccine-induced T-cell responses in the subset studied, B-cell frequencies were low with minimal memory cell formation. Conclusions: A 3-dose primary mRNA series enhanced anti-S IgG responses to titers equivalent to healthy adults in patients with lymphoid malignancies who were seropositive after the first 2 doses and seroconverted 17.1% who were seronegative after the first 2 doses. T-cell responses were present, raising the possibility that the vaccines may confer some cell-based protection even if not measurable by anti-S IgG.

3.
Transplant Cell Ther ; 29(6): 398.e1-398.e5, 2023 06.
Article in English | MEDLINE | ID: covidwho-2290940

ABSTRACT

Patients receiving chimeric antigen receptor T cell (CAR-T) therapy may have impaired humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations owing to their underlying hematologic malignancy, prior lines of therapy, and CAR-T-associated hypogammaglobulinemia. Comprehensive data on vaccine immunogenicity in this patient population are limited. A single-center retrospective study of adults receiving CD19 or BCMA-directed CAR-T therapy for B cell non-Hodgkin lymphoma or multiple myeloma was conducted. Patients received at least 2 doses of SARS-CoV-2 vaccination with BNT162b2 or mRNA-1273 or 1 dose of Ad26.COV2.S and had SARS-CoV-2 anti-spike antibody (anti-S IgG) levels measured at least 1 month after the last vaccine dose. Patients were excluded if they received SARS-CoV-2 monoclonal antibody therapy or immunoglobulin within 3 months of the index anti-S titer. The seropositivity rate (assessed by an anti-S assay cutoff of ≥.8 U/mL in the Roche assay) and median anti-S IgG titers were analyzed. Fifty patients were included in the study. The median age was 65 years (interquartile range [IQR], 58 to 70 years), and the majority were male (68%). Thirty-two participants (64%) had a positive antibody response, with a median titer of 138.5 U/mL (IQR, 11.61 to 2541 U/mL). Receipt of ≥3 vaccines was associated with a significantly higher anti-S IgG level. Our study supports current guidelines for SARS-CoV-2 vaccination among recipients of CAR-T therapy and demonstrates that a 3-dose primary series followed by a fourth booster increases antibody levels. However, the relatively low magnitude of titers and low percentage of nonresponders demonstrates that further studies are needed to optimize vaccination timing and determine predictors of vaccine response in this population.


Subject(s)
COVID-19 , Receptors, Chimeric Antigen , Aged , Female , Humans , Male , Middle Aged , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , Cell- and Tissue-Based Therapy , COVID-19/prevention & control , COVID-19 Vaccines , Immunogenicity, Vaccine , Immunoglobulin G , Receptors, Chimeric Antigen/therapeutic use , Retrospective Studies , SARS-CoV-2
4.
Transplantation and cellular therapy ; 2023.
Article in English | EuropePMC | ID: covidwho-2248886

ABSTRACT

Introduction Patients receiving chimeric antigen receptor T-cell (CAR T-cell) therapy may have impaired humoral responses to SARS-CoV-2 vaccinations due to their underlying hematologic malignancy, prior lines of therapy, and CAR T-cell-associated hypogammaglobulinemia. Comprehensive data on vaccine immunogenicity in this patient population are limited. Methods A single-center retrospective study of adults receiving CD19 or BCMA-directed CAR T-cell therapy for B-cell non-Hodgkin lymphoma or multiple myeloma was conducted. Patients received at least two doses of SARS-CoV-2 vaccinations with BNT162b2, mRNA-1273, or one dose of Ad26.COV2.S and had SARS-CoV-2 anti-spike antibody (anti-S IgG) levels measured at least one month after the last vaccine dose. Patients were excluded if they received SARS-CoV-2 monoclonal antibody therapy or immunoglobulin within three months of the index anti-S titer. The seropositivity rate (assessed by anti-S assay cutoff of ≥0.8 U/mL, Roche assay) and median anti-S IgG titers were analyzed. Results Fifty patients were included in the study. Median age was 65 years (IQR 58–70), and a majority of patients were male (68%). Thirty-two (64%) participants had a positive antibody response, with a median titer of 138.5 U/mL (IQR 11.61–2541). Receiving ≥3 vaccines was associated with a significantly higher anti-S IgG. Conclusion Our study supports current guidelines for SARS-CoV-2 vaccination among CAR T-cell recipients and demonstrates that a three-dose primary series followed by a fourth booster increases antibody levels. However, the relatively low magnitude of titers and percent of non-responders demonstrates that further studies are needed to optimize vaccination timing and determine predictors of vaccine response in this population. Graphical Image, graphical

5.
Clin Biochem ; 117: 60-68, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2284244

ABSTRACT

BACKGROUND: Serologic assays for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been proposed to assist with the acute diagnosis of infection, support epidemiological studies, identify convalescent plasma donors, and evaluate vaccine response. METHODS: We report an evaluation of nine serologic assays: Abbott (AB) and Epitope (EP) IgG and IgM, EUROIMMUN (EU) IgG and IgA, Roche anti-N (RN TOT) and anti-S (RS TOT) total antibody, and DiaSorin (DS) IgG. We evaluated 291 negative controls (NEG CTRL), 91 PCR positive (PCR POS) patients (179 samples), 126 convalescent plasma donors (CPD), 27 healthy vaccinated donors (VD), and 20 allogeneic hematopoietic stem cell transplant (HSCT) recipients (45 samples). RESULTS: We observed good agreement with the method performance claims for specificity (93-100%) in NEG CTRL but only 85% for EU IgA. The sensitivity claims in the first 2 weeks of symptom onset was lower (26-61%) than performance claims based on > 2 weeks since PCR positivity. We observed high sensitivities (94-100%) in CPD except for AB IgM (77%), EP IgM (0%). Significantly higher RS TOT was observed for Moderna vaccine recipients then Pfizer (p-values < 0.0001). A sustained RS TOT response was observed for the five months following vaccination. HSCT recipients demonstrated significantly lower RS TOT than healthy VD (p < 0.0001) at dose 2 and 4 weeks after. CONCLUSIONS: Our data suggests against the use of anti-SARS-CoV-2 assays to aid in acute diagnosis. RN TOT and RS TOT can readily identify past-resolved infection and vaccine response in the absence of native infection. We provide an estimate of expected antibody response in healthy VD over the time course of vaccination for which to compare antibody responses in immunosuppressed patients.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Sensitivity and Specificity , Antibodies, Viral , Immunoglobulin G , COVID-19 Serotherapy , Immunoglobulin M , Immunoglobulin A , COVID-19 Testing
6.
Transplantation and cellular therapy ; 2023.
Article in English | EuropePMC | ID: covidwho-2235545

ABSTRACT

Background The role of donor and recipient COVID-19 immunologic status pre-transplant has not been fully investigated for allogeneic hematopoietic stem cell transplant (HSCT) recipients. Given poor immunogenicity to vaccines in this population and severe outcomes of COVID-19, adoptive transfer of immunity may offer important insights for improved protection for this vulnerable population. Objective To evaluate the role of adoptive transfer of immunity at one month post-transplant and six months post-transplant after vaccination of the recipient, based on SARS-CoV-2 vaccination and infection exposures of both the recipient and donor prior to transplant. Study Design Using banked specimens from related donor allogeneic HSCT recipients and clinical data for both donors and recipients, anti-Spike (S) IgG titers were analyzed at one-, three-, and six-months post-transplant according to prior SARS-CoV-2 immunologic exposures. Recipients were excluded if they had received SARS-CoV-2 monoclonal antibodies or had infection in the first six months after transplant. Results Of the 53 recipient-donor pairs, 29 donors and 24 recipients had prior SARS-CoV-2 immunologic exposures. Recipient-donor pairs with no prior SARS-CoV-2 exposures (D0R0) had significantly lower anti-S IgG titers at one month as compared to recipient-donor pairs with prior exposures (D1R1) (D0R0 median 2.43, IQR 0.41-3.77;D1R1 median 8.42, IQR 5.58 – 12.20;p = 0.008). At six months, anti-S IgG titers were higher in recipients who were vaccinated at three months post-transplant in the D1R1 cohort (median IgG 148.34, IQR 92.36-204.33) as compared to the D0R0 cohort (median IgG 38.74, IQR 8.93 - 119.71). Conclusions Current strategies should be optimized to enhance SARS-CoV-2 protection for HSCT recipients, including augmentation of the immune response for both the donors and recipients prior to transplant.

7.
Transplant Cell Ther ; 29(5): 337.e1-337.e5, 2023 05.
Article in English | MEDLINE | ID: covidwho-2221075

ABSTRACT

The role of donor and recipient Coronavirus disease 2019 (COVID-19) immunologic status pre-transplantation has not been fully investigated in allogeneic hematopoietic stem cell transplantation (HSCT) recipients. Given the poor immunogenicity to vaccines in this population and the serious outcomes of COVID-19, adoptive transfer of immunity may offer important insight into improving protection for this vulnerable population. In this study, we evaluated the role of adoptive transfer of immunity at 1 month post-transplantation and 6 months post-transplantation after vaccination of recipients, based on pre-transplantation severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infection exposures of both recipient and donor. Using banked specimens from related donor allogeneic HSCT recipients and clinical data from both donors and recipients, anti-Spike (S) IgG titers were analyzed at 1, 3, and 6 months post-transplantation according to prior SARS-CoV-2 immunologic exposures. Recipients were excluded if they had received SARS-CoV-2 monoclonal antibodies or had infection in the first 6 months post-transplantation. Of the 53 recipient-donor pairs, 29 donors and 24 recipients had prior SARS-CoV-2 immunologic exposure. Recipient-donor pairs with no prior SARS-CoV-2 exposure (D0R0) had significantly lower anti-S IgG titers at 1 month compared to those with prior exposures (D1R1) (D0R0: median, 2.43 [interquartile range (IQR), .41 to 3.77]; D1R1: median, 8.42; IQR, 5.58 to 12.20]; P = .008). At 6 months, anti-S IgG titers were higher in recipients who were vaccinated at 3 months post-transplantation in the D1R1 cohort (median IgG, 148.34; IQR, 92.36 to 204.33) compared with the D0R0 cohort (median IgG, 38.74; IQR, 8.93 to 119.71). Current strategies should be optimized to enhance SARS-CoV-2 protection for HSCT recipients, including augmentation of the immune response for both donors and recipients prior to transplantation.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Antibodies, Viral , Immunoglobulin G
8.
Clin Lab Med ; 42(1): 111-128, 2022 03.
Article in English | MEDLINE | ID: covidwho-2130428

ABSTRACT

As new public health challenges relating to COVID-19 emerge, such as variant strains, waning vaccine efficacy over time, and decreased vaccine efficacy for special populations (immunocompromised hosts), it is important to determine a correlate of protection (CoP) to allow accurate bridging studies for special populations and against variants of concern. Large-scale phase 3 clinical trials are inefficient to rapidly assess novel vaccine candidates for variant strains or special populations, because these trials are slow and costly. Defining a practical CoP will aid in efficiently conducting future assessments to further describe protection for individuals and on a population level for surveillance.


Subject(s)
COVID-19 , Vaccines , Antibody Formation , COVID-19 Vaccines , Humans , SARS-CoV-2
9.
Clin Infect Dis ; 75(1): e920-e923, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2008524

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 messenger RNA vaccine-induced humoral response and reactogenicity profile are described in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Findings showed that 75.0% (by Simoa assay) or 80.0% (by Roche assay) of the HSCT cohort had a positive antibody response on series completion, compared with 100% in the healthy cohort.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , mRNA Vaccines , COVID-19/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2 , Vaccines , Vaccines, Synthetic , mRNA Vaccines/adverse effects
10.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1999431

ABSTRACT

Background Patients with lymphoid malignancies are at risk for poor COVID-19 related outcomes and have reduced vaccine-induced immune responses. Currently a three-dose primary regimen of mRNA vaccines is recommended in the U.S. for immunocompromised hosts. Methods A prospective cohort study of healthy adults (n = 27) and patients with lymphoid malignancies (n = 94) was conducted, with longitudinal follow-up through completion of a two or three-dose primary mRNA COVID vaccine series, respectively. Humoral responses were assessed in all participants, and cellular immunity in a subset of participants. Results The rate of seroconversion (68.1% v. 100%) and the magnitude of peak anti-S IgG titer (median anti-S IgG 32.4, IQR 0.48-75.0 v. 72.6, IQR 51.1-100.1;p = 0.0202) were both significantly lower in patients with lymphoid malignancies as compared to the healthy cohort. However, peak titers of patients with lymphoid malignancies who responded to vaccination were similar to healthy cohort titers (median anti-S IgG 64.3, IQR 23.7 - 161.5, p = 0.7424). The third dose seroconverted 7/41 (17.1%) patients who were seronegative after the first two doses. Although most patients with lymphoid malignancies produced vaccine-induced T-cell responses in the subset studied, B-cell frequencies were low with minimal memory cell formation. Conclusions A three-dose primary mRNA series enhanced anti-S IgG responses to titers equivalent to healthy adults in patients with lymphoid malignancies who were seropositive after the first two doses and seroconverted 17.1% who were seronegative after the first two doses. T-cell responses were present, raising the possibility that the vaccines may confer some cell-based protection even if not measurable by anti-S IgG.

11.
Clin Infect Dis ; 75(Supplement_1): S46-S50, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-2001239

ABSTRACT

Authorization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines for children has ushered in a new phase of the immunization campaign to address the pandemic but has been received with mixed responses from parents, children, and opinion leaders. Herein we consider perceptions and attitudes towards pediatric SARS-CoV-2 vaccines from a Food and Drug Administration (FDA) public commentary reflecting more than 63 000 comments.


Subject(s)
COVID-19 , Viral Vaccines , Attitude , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , SARS-CoV-2 , United States/epidemiology , United States Food and Drug Administration , Vaccination
12.
Clin Infect Dis ; 75(Supplement_1): S5-S10, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1992139

ABSTRACT

Vaccine clinical trials have been essential to developing effective severe acute respiratory syndrome coronavirus 2 vaccines. The challenges of supply chain disruptions, infection control, study designs, and participant factors that affect trial procedures are reviewed, with specific solutions to streamline the clinical trial process.


Subject(s)
COVID-19 , Pandemics , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2
14.
Microbiol Spectr ; 10(2): e0021122, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1752769

ABSTRACT

The use of anti-spike (S) serologic assays as surrogate measurements of SARS-CoV-2 vaccine induced immunity will be an important clinical and epidemiological tool. The characteristics of a commercially available anti-S antibody assay (Roche Elecsys anti-SARS-CoV-2 S) were evaluated in a cohort of vaccine recipients. Levels were correlated with pseudotype neutralizing antibodies (NAb) across SARS-CoV-2 variants. We recruited adults receiving a two-dose series of mRNA-1273 or BNT162b2 and collected serum at scheduled intervals up to 8 months post-first vaccination. Anti-S and NAb levels were measured, and correlation was evaluated by (i) vaccine type and (ii) SARS-CoV-2 variant (wild-type, Alpha, Beta, Gamma, and three constructs Day 146*, Day 152*, and RBM-2). Forty-six mRNA vaccine recipients were enrolled. mRNA-1273 vaccine recipients had higher peak anti-S and NAb levels compared with BNT162b2 (P < 0.001 for anti-S levels; P < 0.05 for NAb levels). When anti-S and NAb levels were compared, there was good correlation (all r values ≥ 0.85) in both BNT162b2 and mRNA-1273 vaccine recipients across all evaluated variants; however, these correlations were nonlinear in nature. Lower correlation was identified between anti-S and NAb for the Beta variant (r = 0.88) compared with the wild-type (WT) strain (r = 0.94). Finally, the degree of neutralizing activity at any given anti-S level was lower for each variant compared with that of the WT strain, (P < 0.001). Although the Roche anti-S assay correlates well with NAb levels, this association is affected by vaccine type and SARS-CoV-2 variant. These variables must be considered when interpreting anti-S levels. IMPORTANCE We evaluated anti-spike antibody concentrations in healthy mRNA vaccinated individuals and compared these concentrations to values obtained from pseudotype neutralization assays targeting SARS-CoV-2 variants of concern to determine how well anti-spike antibodies correlate with neutralizing titers, which have been used as a marker of immunity from COVID-19 infection. We found high peak anti-spike concentrations in these individuals, with significantly higher levels seen in mRNA-1273 vaccine recipients. When we compared anti-spike and pseudotype neuralization titers, we identified good correlation; however, this correlation was affected by both vaccine type and variant, illustrating the difficulty of applying a "one size fits all" approach to anti-spike result interpretation. Our results support CDC recommendations to discourage anti-spike antibody testing to assess for immunity after vaccination and cautions providers in their interpretations of these results as a surrogate of protection in COVID-vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
15.
Infect Control Hosp Epidemiol ; 43(11): 1664-1671, 2022 11.
Article in English | MEDLINE | ID: covidwho-1713057

ABSTRACT

OBJECTIVES: To determine the incidence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare personnel (HCP) and to assess occupational risks for SARS-CoV-2 infection. DESIGN: Prospective cohort of healthcare personnel (HCP) followed for 6 months from May through December 2020. SETTING: Large academic healthcare system including 4 hospitals and affiliated clinics in Atlanta, Georgia. PARTICIPANTS: HCP, including those with and without direct patient-care activities, working during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Incident SARS-CoV-2 infections were determined through serologic testing for SARS-CoV-2 IgG at enrollment, at 3 months, and at 6 months. HCP completed monthly surveys regarding occupational activities. Multivariable logistic regression was used to identify occupational factors that increased the risk of SARS-CoV-2 infection. RESULTS: Of the 304 evaluable HCP that were seronegative at enrollment, 26 (9%) seroconverted for SARS-CoV-2 IgG by 6 months. Overall, 219 participants (73%) self-identified as White race, 119 (40%) were nurses, and 121 (40%) worked on inpatient medical-surgical floors. In a multivariable analysis, HCP who identified as Black race were more likely to seroconvert than HCP who identified as White (odds ratio, 4.5; 95% confidence interval, 1.3-14.2). Increased risk for SARS-CoV-2 infection was not identified for any occupational activity, including spending >50% of a typical shift at a patient's bedside, working in a COVID-19 unit, or performing or being present for aerosol-generating procedures (AGPs). CONCLUSIONS: In our study cohort of HCP working in an academic healthcare system, <10% had evidence of SARS-CoV-2 infection over 6 months. No specific occupational activities were identified as increasing risk for SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Health Personnel , Risk Factors , Delivery of Health Care , Immunoglobulin G
16.
Clin Infect Dis ; 74(4): 715-718, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1702854

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins were measured in longitudinal plasma samples collected from 13 participants who received two doses of mRNA-1273 vaccine. Eleven of 13 participants showed detectable levels of SARS-CoV-2 protein as early as day 1 after first vaccine injection. Clearance of detectable SARS-CoV-2 protein correlated with production of immunoglobulin G (IgG) and immunoglobulin A (IgA).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics
17.
Science ; 375(6578): eabl6251, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1650842

ABSTRACT

Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , BNT162 Vaccine/immunology , Betacoronavirus/immunology , COVID-19/immunology , COVID-19/virology , Cross Reactions , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes , Evolution, Molecular , Humans , Models, Molecular , Mutation , Polysaccharides/analysis , Protein Binding , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Pseudotyping
18.
Front Public Health ; 9: 744535, 2021.
Article in English | MEDLINE | ID: covidwho-1566663

ABSTRACT

Background: Antibodies against SARS-CoV-2 can be detected by various testing platforms, but a detailed understanding of assay performance is critical. Methods: We developed and validated a simple enzyme-linked immunosorbent assay (ELISA) to detect IgG binding to the receptor-binding domain (RBD) of SARS-CoV-2, which was then applied for surveillance. ELISA results were compared to a set of complimentary serologic assays using a large panel of clinical research samples. Results: The RBD ELISA exhibited robust performance in ROC curve analysis (AUC> 0.99; Se = 89%, Sp = 99.3%). Antibodies were detected in 23/353 (6.5%) healthcare workers, 6/9 RT-PCR-confirmed mild COVID-19 cases, and 0/30 non-COVID-19 cases from an ambulatory site. RBD ELISA showed a positive correlation with neutralizing activity (p = <0.0001, R2 = 0.26). Conclusions: We applied a validated SARS-CoV-2-specific IgG ELISA in multiple contexts and performed orthogonal testing on samples. This study demonstrates the utility of a simple serologic assay for detecting prior SARS-CoV-2 infection, particularly as a tool for efficiently testing large numbers of samples as in population surveillance. Our work also highlights that precise understanding of SARS-CoV-2 infection and immunity at the individual level, particularly with wide availability of vaccination, may be improved by orthogonal testing and/or more complex assays such as multiplex bead assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Health Priorities , Humans , Sensitivity and Specificity
20.
Clin Infect Dis ; 72(5): e154-e157, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1387787

ABSTRACT

To assess the impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic on seasonal respiratory viruses, absolute case counts and viral reproductive rates from 2019-2020 were compared against previous seasons. Our findings suggest that the public health measures implemented to reduce SARS-CoV-2 transmission significantly reduced the transmission of other respiratory viruses.


Subject(s)
COVID-19 , Viruses , Humans , Pandemics , SARS-CoV-2 , Seasons , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL